Definitions for "Poisson Distribution" Add To Word List
 Enter your search terms Submit search form
Keywords:
Related Terms:
A statistical distribution that serves as a model for situations concerned with the number of successes per unit of observation, e.g. the number of phytoplankton caught per trawl. More strictly speaking, this is a limiting form of the binomial distribution when the probability of success for an individual trial approaches zero, the number of trials becomes infinite, and the product of these two quantities remains constant.
A statistical tool that assumes 3 conditions: for any one observation only two results are possible; the chances of these two results do not vary from one observation to the next; and successive observations are independent
discrete random variable X is said to follow a Poisson distribution with parameter m, written X ~ Po(m), if in a memoryless or completely random process, X represents a count of the number of random events that occur in a certain time interval or spatial area. For example, the number of cars passing a fixed point in a 5 minute interval; the number of calls received by a switchboard during a given period of time.
a theoretical distribution that is a good approximation to the binomial distribution when the probability is small and the number of trials is large
a probability distribution of a Poisson random variable
The distribution of the total number of successes in a large number of Bernoulli trials when the probability of success in each trial is very small.
Poisson distributions model (some) discrete random variables (i.e. variables that may take on only a countable number of distinct values, such as 0, 1, 2, 3, 4,....). Typically, a Poisson random variable is a count of the number of events that occur in a certain time interval or spatial area (statistics). [6
Mathematical function relating the number of particles in a given volume element to the average concentration of randomly distributed particles in the entire volume.1
Poisson distributions model (some) discrete random variables. Typically, a Poisson random variable is a count of the number of events that occur in a certain time interval or spatial area. For example, the number of cars passing a fixed point in a five minute interval.
Used in the description of discrete cyclone occurrence in limited domains; Section 9.7.
A distribution often used to express probabilities concerning the number of events per unit. For example, the number of computer malfunctions per year, or the number of bubbles per square yard in a sheet of glass, might follow a Poisson distribution. The distribution is fully characterized by its mean, usually expressed in terms of a rate. Parameters: mean B0 Domain: X=0,1,2,... Mean: B Variance: B
Probability function that is used for charts for defects.
A probability distribution that characterizes discrete events occurring independently of one another in time. See attenuation.
A mathematical expression giving the probability of observing various numbers of a particular event in a sample when the mean probability of an event on any one trial is very small.